Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Xiao-Li Zhu,* Mei-Jin Lin, Jun-Dong Wang, Nai-Sheng Chen and Jin-Ling Huang

Department of Chemistry, University of Fuzhou, Fuzhou, 350002, People's Republic of China

Correspondence e-mail: wangjd@fzu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.108$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[4-(1,3-Dioxo-2,3-dihydro-1 H-isoindol-2-yl)butoxy]phthalonitrile

The title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$, consists a phthalonitrile group and an isoindole-1,3-dione group connected by a flexible butoxy chain. The dihedral angle between these two groups is $70.47(3)^{\circ}$. Partial face-to-face overlap between the phthalonitrile groups of centrosymmetrically related molecules is observed. In addition, the crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The title compound, (I), can be used as a precursor in the synthesis of phthalimide-substituted phthalocyanines. The phthalimide groups can be converted to amino-substituted phthalocyanines by treatment with hydrazine at room temperature (Fernandez et al., 1995). This precursor can be condensed with other hydrophobic precursors to form amphiphilic phthalocyanines, which seem to have better interaction with cell tissues in the photodynamic therapy (PDT) of tumors (Griffiths et al., 1994).

(I)

The molecular structure of (I) is shown in Fig. 1. The N1C 7 [1.1386 (17) Å] and $\mathrm{N} 2-\mathrm{C} 8[1.1375$ (17) Å] bond lengths show normal values (Nesi et al., 1998). The C1-C7 [1.4389 (17) \AA] and C2-C8 [1.4391 (17) A $]$ bond distances are comparable to the mean value of 1.443 (8) Å reported for Csp ${ }^{2}$ - Csp p^{1} bonds by Allen et al. (1987). The dihedral angle between the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring and the isoindole group is 70.47 (3) ${ }^{\circ}$.

In the crystal packing, the molecules are stacked along the short a axis, without any $\pi-\pi$ interaction. However, partial face-to-face overlap between the $\mathrm{C} 1-\mathrm{C} 5$ benzene rings of the molecules at (x, y, z) and $(-x, 1-y,-z)$ is observed, with a perpendicular distance of $3.425 \AA$. In addition, the molecular packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1).

Experimental

3-Hydroxyphthalonitrile and N -(4-bromobutyl)phthalimide were synthesized according to the literature procedures of Li et al. (1996) and Kuang et al. (2001), respectively. 3-Hydroxyphthalonitrile (1.5 g , 10 mmol) and N-(4-bromobutyl)phthalimide ($4 \mathrm{~g}, 14 \mathrm{mmol}$) were dissolved in anhydrous dimethylformamide (150 ml) under an N_{2} atmosphere, and then dry fine-powdered potassium carbonate (5.5 g)

Received 10 March 2005 Accepted 29 March 2005 Online 9 April 2005
was added with vigorous stirring. The reaction mixture was stirred for 6 h at 333 K and then poured into ice-water. The filter cake was then recrystallized from tetrahydrofuran and dried. Single crystals of (I) (yield 40%) were obtained via slow evaporation of a solution in absolute tetrahydrofuran at room temperature. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v$ $3045(\mathrm{Ar}-\mathrm{CH}), 2221(\mathrm{C}-\mathrm{N}), 2881,2956(\mathrm{C}-\mathrm{H}), 1704(\mathrm{C}-\mathrm{O}), 1597$, $1498,1469,1435,1396,1374,1356,1323,1171,1136,1085,1054,1004$, $925,884,853,793,757,720,528 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $): \delta 1.754(s$, $4 \mathrm{H}), 3.641(\mathrm{~s}, 2 \mathrm{H}), 4.166(s, 2 \mathrm{H}), 7.417-7.435(m, 1 \mathrm{H}), 7.734-7.738(d$, $1 \mathrm{H}), 7.844-7.857(m, 4 \mathrm{H}), 8.009-8.027(d, 1 \mathrm{H})$.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=345.35$
Monoclinic, $P 2_{\AA} / n$
$a=5.8020(3) \AA$
$b=13.6911(8) \AA$
$c=21.4006(14) \AA$
$\beta=92.721(4)^{\circ}$
$V=1698.06(17) \AA^{\circ}$
$Z=4$
$D_{x}=1.351 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3884 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colorless
$0.75 \times 0.52 \times 0.35 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD area-detector diffractometer
ω scans
Absorption correction: none
12870 measured reflections
3876 independent reflections
3327 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-17 \rightarrow 17$
$l=-27 \rightarrow 25$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0542 P)^{2}\right. \\
& \quad+0.2969 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.108$
$S=1.01$
3876 reflections
295 parameters
All H -atom parameters refined

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 1 \cdots \mathrm{O} 2{ }^{\text {i }}$	0.969 (15)	2.327 (15)	3.2766 (16)	166.3 (12)
$\mathrm{C} 6-\mathrm{H} 3 \cdots \mathrm{O} 3^{\text {ii }}$	0.963 (14)	2.418 (14)	3.3215 (16)	156.0 (11)
C9-H4...O2	0.999 (15)	2.590 (15)	3.4098 (18)	139.3 (11)
$\mathrm{C} 11-\mathrm{H} 9 \cdots \mathrm{O} 2^{\text {iii }}$	0.986 (16)	2.465 (15)	3.1902 (17)	130.1 (11)
$\mathrm{C} 12-\mathrm{H} 10 \cdots \mathrm{O} 2$	0.994 (15)	2.466 (14)	2.8946 (18)	105.5 (10)

[^0]

Figure 1
The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

All H atoms were located in a difference Fourier map and refined isotropically. The $\mathrm{C}-\mathrm{H}$ distances lie in the range 0.964 (15)1.010 (16) A.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

This work was supported by the Science Foundation of Fujian Province (No. E0310007), and the Science and Technology Developing Foundation of Fuzhou University (No. 2004-XQ-10).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Fernandez, D. A., Dicelio, L. E. \& Awruch, J. (1995). J. Heterocycl. Chem. 32, 519-522.
Griffiths, J., Cruse-Sawyer, J., Wood, S. R., Schofield, J., Brown, S. B. \& Dixon, B. (1994). J. Photochem. Photobiol. B Biol. 24, 195-199.

Kuang, Y. Q., Wei, L. L. \& Zhang, S. Y. (2001). Chin. Chem. Reagent. 23, 359361.

Li, H. W., Zhou, Q. F. \& Xu, H. J. (1996). Chin. J. Org. Chem. 16, 160-164. McArdle, P. (1995). J. Appl. Cryst. 28, 65-65.
Nesi, R., Turchi, S., Giomi, D. \& Corsi, C. (1998). Tetrahedron, 54, 1085110856.

Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: Symmetry codes: (i) $-x, 1-y,-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $1+x, y, z$.

